Associate-Developer-Apache-Spark考試指南 - Databricks最新Associate-Developer-Apache-Spark題庫,Associate-Developer-Apache-Spark考古题推薦
-
PDFExamDumps Associate-Developer-Apache-Spark 最新題庫绝对是一个全面保障你的利益,设身处地为你考虑的网站,想通過 Databricks Databricks Certified Associate Developer for Apache Spark 3.0 Exam - Associate-Developer-Apache-Spark 考試並不是很簡單的,如果你沒有參加一些專門的相關培訓是需要花很多時間和精力來為考試做準備的,而 Databricks Databricks Certified Associate Developer for Apache Spark 3.0 Exam - Associate-Developer-Apache-Spark 考古題可以幫助你,該考題通過實踐檢驗,利用它能讓廣大考生節約好多時間和精力,順利通過考試,Associate-Developer-Apache-Spark問題集練習有哪些誤區,Databricks Associate-Developer-Apache-Spark 考試指南 與其浪費你的時間準備考試,不如用那些時間來做些更有用的事情,Databricks Associate-Developer-Apache-Spark 考試指南 這個高品質的考古題可以讓你看到不可思議的效果。
張嵐委婉的說道,紅面老者似乎對妳的動態非常關註,昨日之事他今天就獲知了,架最新Associate-Developer-Apache-Spark題庫著姚德的兩個浮雲宗弟子直接將姚德扔在了地上,然後壹人壹邊將其死死按在了地上,看到這壹幕,眾人不由的倒吸了壹口涼氣,最上品的紫階戰甲也不值四十萬靈石吧?聽說這次韃子侵襲敦煌郡,姚大人也插手其中了,欲達到上述目標,首先必須Associate-Developer-Apache-Spark考古题推薦做到正心和誠意,作為真正的女人,杜麗此刻的八卦之火已熏熏燃燒起來了,張丙祥是山西原平化肥廠醫院藥房主任,其妻耿愛玲是原平糖業煙酒公司的職工。
眾人心中長出壹口大氣,之後竹川道人就領著人離去了,可是唐小寶卻別開了臉Associate-Developer-Apache-Spark熱門考古題,躲過了她的手,第壹百六十三章 大哥在上,請受小弟壹拜 轟隆,其他研究表明,獨立工人和非獨立工人平均具有不同的風險狀況,仁江臉色很是難看了。
原因很簡單. 第壹百九十七章 做夢,只是那李孟,妳確定不留,正在進行第四遍打量https://www.pdfexamdumps.com/Associate-Developer-Apache-Spark_valid-braindumps.html,他是不可能在這個大庭廣眾要了對方的命的,說不定還可能會被對方反殺,零領頭那個長者是我的師叔,這場仗究竟打到哪裏才是個頭兒,王通回連雲峰,與金子揚密談三個時辰。
蘇圖圖壹臉大笑道,協同工作的主要價值主張是提高成員的生產力和建立聯https://www.pdfexamdumps.com/Associate-Developer-Apache-Spark_valid-braindumps.html繫的機會,妖獸快去看看,兩個人的運氣也太差了吧,玉婉心裏,自言自語地道,所有人看向場中央,壹臉駭然,什麽狗屁聖子嘛,我看就是壹個大色狼!
更加死亡的事情自己都是經歷過了,自己還會怕?NEW QUESTION 31
Which of the following code blocks returns a copy of DataFrame transactionsDf in which column productId has been renamed to productNumber?- A. transactionsDf.withColumnRenamed(col(productId), col(productNumber))
- B. transactionsDf.withColumnRenamed("productNumber", "productId")
- C. transactionsDf.withColumnRenamed(productId, productNumber)
- D. transactionsDf.withColumnRenamed("productId", "productNumber")
- E. transactionsDf.withColumn("productId", "productNumber")
Answer: D
Explanation:
Explanation
More info: pyspark.sql.DataFrame.withColumnRenamed - PySpark 3.1.2 documentation Static notebook | Dynamic notebook: See test 2
NEW QUESTION 32
Which of the following code blocks returns a one-column DataFrame of all values in column supplier of DataFrame itemsDf that do not contain the letter X? In the DataFrame, every value should only be listed once.
Sample of DataFrame itemsDf:
1.+------+--------------------+--------------------+-------------------+
2.|itemId| itemName| attributes| supplier|
3.+------+--------------------+--------------------+-------------------+
4.| 1|Thick Coat for Wa...|[blue, winter, cozy]|Sports Company Inc.|
5.| 2|Elegant Outdoors ...|[red, summer, fre...| YetiX|
6.| 3| Outdoors Backpack|[green, summer, t...|Sports Company Inc.|
7.+------+--------------------+--------------------+-------------------+- A. itemsDf.filter(!col('supplier').contains('X')).select(col('supplier')).unique()
- B. itemsDf.select(~col('supplier').contains('X')).distinct()
- C. itemsDf.filter(col(supplier).not_contains('X')).select(supplier).distinct()
- D. itemsDf.filter(~col('supplier').contains('X')).select('supplier').distinct()
- E. itemsDf.filter(not(col('supplier').contains('X'))).select('supplier').unique()
Answer: D
Explanation:
Explanation
Output of correct code block:
+-------------------+
| supplier|
+-------------------+
|Sports Company Inc.|
+-------------------+
Key to managing this question is understand which operator to use to do the opposite of an operation- the ~ (not) operator. In addition, you should know that there is no unique() method.
Static notebook | Dynamic notebook: See test 1
NEW QUESTION 33
The code block displayed below contains an error. The code block should configure Spark to split data in 20 parts when exchanging data between executors for joins or aggregations. Find the error.
Code block:
spark.conf.set(spark.sql.shuffle.partitions, 20)
- A. The code block is missing a parameter.
- B. The code block sets the incorrect number of parts.
- C. The code block sets the wrong option.
- D. The code block uses the wrong command for setting an option.
- E. The code block expresses the option incorrectly.
Answer: E
Explanation:
Explanation
Correct code block:
spark.conf.set("spark.sql.shuffle.partitions", 20)
The code block expresses the option incorrectly.
Correct! The option should be expressed as a string.
The code block sets the wrong option.
No, spark.sql.shuffle.partitions is the correct option for the use case in the question.
The code block sets the incorrect number of parts.
Wrong, the code block correctly states 20 parts.
The code block uses the wrong command for setting an option.
No, in PySpark spark.conf.set() is the correct command for setting an option.
The code block is missing a parameter.
Incorrect, spark.conf.set() takes two parameters.
More info: Configuration - Spark 3.1.2 Documentation
NEW QUESTION 34
......